オームの法則
オームの法則(オームのほうそく、テンプレート:Lang-en)とは、導電現象において、電気回路の部分に流れる電流とその両端の電位差の関係を主張する法則である。クーロンの法則とともに電気工学で最も重要な関係式の一つである。
1781年にヘンリー・キャヴェンディッシュが発見したが、その業績は死後数十年のちに1879年にその遺稿を纏めたマクスウェルが『ヘンリー・キャヴェンディシュ電気学論文集』として出版するまで世間には未公表であったため知られておらず、1826年にドイツの物理学者であるゲオルク・オームによって独自に再発見・公表されたため、その名を冠してオームの法則と呼ばれる。
内容
オームの法則は、電気回路の2点間の電位差が、その2点間に流れる電流に比例することを主張する[1]。 電流が テンプレート:Mvar で電位差が テンプレート:Mvar であるとき テンプレート:Indent となる。比例係数 テンプレート:Mvar は導体の材質、形状、温度などによって定まり、電気抵抗(テンプレート:En)あるいは単に抵抗(テンプレート:En)と呼ばれる。
この関係の逆を考えると、流れる電流が電位差に比例する、と表現することができる。これを数式で表せば テンプレート:Indent となる。このときの比例係数 テンプレート:Math は電気伝導度(テンプレート:En)、あるいはコンダクタンスと呼ばれる。
電流の単位にアンペア(記号: A)を、電位差の単位にボルト(記号: V)を用いたときの電気抵抗の単位はオーム(記号: Ω)が用いられる。また、コンダクタンスの単位はジーメンス(記号: S)が用いられる。
微分型表現
導体内の微小な断面(法ベクトル テンプレート:Mvar)を考え、その面積を テンプレート:Mvar とすると、この断面を貫く電流 テンプレート:Mvar は、この点での電流密度を テンプレート:Mvar として テンプレート:Indent と表される。 一方、この微小な断面を貫く微小な法線を考え、その長さを テンプレート:Mvar とすると、この法線に沿った電位差 テンプレート:Mvar は、この点での電場を テンプレート:Mvar として テンプレート:Indent と表される。この電流と電位差にオームの法則を適用すれば テンプレート:Indent となる。導体が一様で等方な材質であると考えれば、電場 テンプレート:Mvar と電流密度 テンプレート:Mvar は平行であると考えられ テンプレート:Indent と表される。比例係数 テンプレート:Math は導体の材質と温度によって定まり、抵抗率 (テンプレート:En)[1]あるいは固有抵抗 (テンプレート:En)と呼ばれる。 さらにその逆関数 テンプレート:Indent と表したときの比例係数 テンプレート:Math は導電率 (テンプレート:En)[1]と呼ばれる。
この表現は導体内の微小領域におけるオームの法則を示しており、微分型表現といわれる。この微分型表現を実際の導体の形状寸法に合わせて積分することによりその導体の電気抵抗が定まる。